Carbon Assimilation and Modelling of the European Land Surfaces


List of Referred Publications
Scientific Questions
Scientific Objectives
Project Work Plan
Partner Institutes
Peer Reviewed Papers
Book Chapters
Annual Reports
Workpackage Reports
Miscellaneous Reports
Request for data
Useful Links
Meetings  and Actions
Forthcoming Events
Contact US

Surface Processes Group - List of Referred Publications

Wolfgang Knorr and Peter Cox. CAMELS-Carbon Assimilation and Modelling of the European Land Surface. In Peter Bergamaschi, Hartmut Behrend, and Andre Jol, editors, Inverse modelling of national and EU greenhouse gas emission inventories, pages 66-69, 2004.  [.pdf ].

P. Rayner, M. Scholze, W. Knorr, T. Kaminski, R. Giering, and H. Widmann. Two decades of terrestrial Carbon fluxes from a Carbon Cycle Data Assimilation System (CCDAS). submitted to Global Biogeochemical Cycles, 2004. [.pdf ]

Mission Experts Division, co-ordinated by M. Rast. Surface Processes and Ecosystem Changes Through Response Analysis. Report for mission selection, ESA ESTEC, 2004. [ .pdf ].  The document contains first results from a forward modelling study using the terrestrial biosphere model BETHY.

M. Scholze, P. Rayner, W. Knorr, T. Kaminski, R. Giering, and H. Widmann. Non-linear parameter optimisation of a terrestrial biosphere model using atm. CO2 observations: CCDAS. Geophysical Research Abstracts, 6:06281, 2004.
[ .ppt/.pdf | .pdf

M. Scholze, P. Rayner, W. Knorr, T. Kaminski, R. Giering, and H. Widmann. A global carbon cycle data assimilation system (CCDAS) to infer atmosphere-biosphere CO2 exchanges. Geophysical Research Abstracts, 6:07504, 2004. [ .pdf

W. Knorr and J. Kattge. Inversion of terrestrial biosphere model parameter values against eddy covariance measurements using Monte Carlo sampling. submitted to Global Change Biology, 2004. [ .pdf

T. Kaminski, R. Giering, M. Scholze, P. Rayner, and W. Knorr. A prototype of a data assimilation system based on automatic differentiation. Geophysical Research Abstracts, 5:11812, 2003. [ .ppt/.pdf | .pdf

T. Kaminski, R. Giering, M. Scholze, P. Rayner, and W. Knorr. An example of an automatic differentiation-based modelling system. In V. Kumar, L. Gavrilova, C. J. K. Tan, and P. L'Ecuyer, editors, Computational Science - ICCSA 2003, International Conference Montreal, Canada, May 2003, Proceedings, Part II, volume 2668 of Lecture Notes in Computer Science, pages 95-104, Berlin, 2003. Springer. [ .ppt/.pdf | .pdf ]

The paper presents a prototype of a Carbon Cycle Data Assimilation System (CCDAS), which is composed of a terrestrial biosphere model (BETHY) coupled to an atmospheric transport model (TM2), corresponding derivative codes as well as a derivative-based optimisation routine. In calibration mode, we use first and second derivatives, to estimate model parameters and their uncertainties from atmospheric observations and their uncertainties. In prognostic mode, we use first derivatives, to map model parameters and their uncertainties onto prognostic quantities and their uncertainties.

M. Scholze. Model studies on the response of the terrestrial carbon cycle on climate change and variability. Examensarbeit, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 2003. [ http | .pdf ]

M. Scholze, P. Rayner, W. Knorr, T. Kaminski, and R. Giering. A prototype Carbon Cycle Data Assimilation System (CCDAS): Inferring interannual variations of vegetation-atmosphere CO2 fluxes. Abstract CG62A-05. Eos Trans. AGU, 83(47), December 2002. [ .ppt/.pdf | http

T. Kaminski, W. Knorr, P. Rayner, and M. Heimann. Assimilating atmospheric data into a terrestrial biosphere model: A case study of the seasonal cycle. Global Biogeochemical Cycles, 16(4):14-1-14-16, 2002. [ http | .ps.gz | .pdf

T. Kaminski and M. Heimann. Inverse modeling of atmospheric carbon dioxide fluxes. Science, 294(5541):259, 2001. [ http | .ps.gz

T. Kaminski, P. Rayner, M. Heimann, and I. Enting. On aggregation errors in atmospheric transport inversions. J. Geophys. Res., 106(D5):4703, 2001.
[ .ps.gz | .pdf

Peter Rayner, Wolfgang Knorr, Marko Scholze, Ralf Giering, Thomas Kaminski, Martin Heimann, and Corinne Le Quere. Inferring terrestrial biosphere carbon fluxes from combined inversions of atmospheric transport and process-based terrestrial ecosystem models. In Proceedings of 6th Carbon dioxide conference at Sendai, pages 1015-1017, 2001. [ .pdf ]

This is the first document featuring the implementation of a carbon cycle data assimilation and prediction scheme, which is based on the terrestrial biosphere model BETHY

R. Giering. Tangent linear and adjoint biogeochemical models. In Prasad S. Kasibhatla, editor, Inverse Methods in Global Biogeochemical Cycles, volume 114, pages 33-48. American Geophysical Union, 2000.

M. Heimann and T. Kaminski. Inverse modeling approaches to infer surface trace gas fluxes from observed atmospheric mixing ratios. In A. F. Bouwman, editor, Approaches to scaling of trace gas fluxes in ecosystems, chapter 14, pages 275-295. Elsevier, Amsterdam, 1999. [ http | .ps.gz | .pdf

T. Kaminski, M. Heimann, and R. Giering. A coarse grid three dimensional global inverse model of the atmospheric transport, 1, Adjoint model and Jacobian matrix. J. Geophys. Res., 104(D15):18,535-18,553, 1999. [ .ps.gz | .pdf

T. Kaminski, M. Heimann, and R. Giering. A coarse grid three dimensional global inverse model of the atmospheric transport, 2, Inversion of the transport of CO2 in the 1980s. J. Geophys. Res., 104(D15):18,555-18,581, 1999. [ .ps.gz | .pdf

M. Heimann and T. Kaminski. Aktueller Forschungsschwerpunkt: Quellen und Senken des atmosphärischen Kohlendioxids. In Jahresbericht der MPG 1998. Max-Planck-Gesellschaft, Munich, Germany, 1999. [ .ps.gz | .pdf

T. Kaminski, M. Heimann, and R. Giering. A matrix representation for an atmospheric transport model computed by its adjoint. In S.-E. Gryning and N. Chaumerliac, editors, Air Pollution Modelling and its Application XII, pages 247-255. Plenum Press, New York, 1998. [ .ps.gz

T. Kaminski. On the benefit of the adjoint technique for inversion of the atmospheric transport employing carbon dioxide as an example of a passive tracer. PhD thesis, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1998.
[ .ps.gz | .pdf ]

T. Kaminski, M. Heimann, and R. Giering. A global scale inversion of the transport of CO2 based on a matrix representation of an atmospheric transport model. In R. Baum, I. Enting, R. Francey, M. Hopkins, and P. Holper, editors, Fifth International Carbon Dioxide Conference, pages 147-148. CSIRO Division of atmospheric research, Aspendale, Victoria, Australia, 1997. [ .ps.gz | .pdf

T. Kaminski, R. Giering, and M. Heimann. Sensitivity of the seasonal cycle of CO2 at remote monitoring stations with respect to seasonal surface exchange fluxes determined with the adjoint of an atmospheric transport model. Physics and Chemistry of the Earth, 21(5-6):457-462, 1996. [ .ps.gz | .pdf ]

Friedlingstein, P., Defresne J.-L., Cox P.M. & Rayner P., 2001. How positive is the feedback between climate change and the carbon cycle? Tellus , (submitted)

Jones C.D., Cox P.M. & Huntingford C., 2002. Uncertainty in climate-carbon cycle projections associated with the sensitivity of soil respiration to temperature. Tellus , (accepted)

Best M.J. & Maisey P.E., 2001. A physically based soil moisture nudging scheme Mon. Wea, Rev. , (submitted)

Best M.J. & Cox P.M. , 2001. Determining the optimal soil temperature scheme for atmospheric model applications. J. Appl. Meteorol. , (submitted)

Essery R.L.H., Best M.J., Betts R.A., Cox P.M. & Taylor C.M., 2001. Explicit representation of sub-grid heterogeneity in a GCM land-surface scheme. J. Hydrometorol. , (submitted)

Faria, Pomeroy J.W. & Essery R.L.H. , 2001. Forest canopy influence on snowcover depletion. Hydrological Processes, (accepted)


Koster K.D., Dirmeyer P.A., Hahmann A.N., Ijpelaar R., Tyahla L., Cox P. , Suarez M.J., 2002. Comparing the degree of land-atmosphere interaction in four atmospheric General Circulation Models. J. Hydromet. , 3 , 363-375
Best M.J. & Hopwood, W.P., 2001. Modelling the local surface exchange over a grass field site under stable conditions. Q.J. R. Meteorol. Soc. , 127 , 2033-2052

Essery R.L.H., 2001. Scaling of windflow and blowing snow fluxes over complex topography. Boundary Layer Meteorology, 100 , 131-147

Jones C.D., Collins M., Cox P.M. & Spall S.A., 2001. The carbon cycle response to ENSO: a coupled climate-carbon cycle model study. Journal of Climate , 14 , 4113-4129

Jones C.D. & Cox P.M. , 2001. Constraints on the temperature sensitivity of global soil respiration from the observed interannual variability in atmospheric CO2. Atmospheric Science Letters , doi:10.1006/asle.2001.0041

Betts R.A., 2001. Biogeophysical impacts of land use on present-day climate: near-surface temperature change and radiative forcing. Atmospheric Science Letters, doi:1006/asle.2001.0023

Cramer W. et al (includes Betts R.A. & Cox P.M. ), 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7 , 357-374

Jones C.D. & Cox P.M., 2001. Modelling the volcanic signal in the atmospheric CO2 record. Global Biogeochemical Cycles , 15 , 453-466


Betts R.A., Cox P.M. & Woodward F.I., 2000. Simulated responses of potential vegetation to doubled-CO2 climate change and feedbacks on near-surface temperature Global Ecology and Biogeography, 9, 171-180

Betts R.A., 2000. Radiative forcing of climate by reforestation through CO2 and surface albedo change. Nature , 408, 187-191

Cox P.M., Betts R.A., Jones C.D., Spall S.A. & Totterdell I.J., 2000. Acceleration of global warming due to carbon cycle feedbacks in a coupled climate model. Nature , 408, 184-187

Crossley J.F., Polcher J., Cox P.M., Gedney N. & Planton S., 2000. Uncertainties linked to land-surface processes in climate change simulations. Climate Dynamics , 16, 949-961

Douville H., Planton S., Royer J.-F., Stephenson D.B., Tyteca, S., Kergoat L., Lafont S. and Betts R.A., 2000. Importance of vegetation feedbacks in doubled-CO2 climate experiments. J. Geophys. Res., 105, 14841-14861

Gedney N., Cox P.M., Douville H., Polcher J. & Valdes P.J, 2000. Characterising GCM land surface schemes to understand their responses to climate change. J. Clim., 13, 3066-3079

Gedney N. & Valdes P.J., 2000. The effect of Amazonian deforestation on the northern hemisphere circulation and climate. Geophysical Research Letters , 27 3053-3056

Harding R.J., Huntingford C. & Cox P.M., 2000. Transpiration from a field in southern United Kingdom: long term modelling and comparison to data. Agric. For. Met., 100, 309-322

Huntingford C. & Cox P.M., 2000. An analogue model to derive additional climate change scenarios from existing GCM simulations Climate Dynamics, 16, 575-586

Schlosser C.A. et al (includes Cox P.M. & N.Gedney), 2000. Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS 2(d). Mon. Wea. Rev., 128, 301-321

Huntingford C., Cox P.M. & Lenton T.M., 2000. Contrasting responses of a simple terrestrial ecosystem model to global change. Ecological Modelling , 134, 41-58

Betts R.A., 1999. Self-beneficial effects of vegetation on climate in a General Circulation Model. Geophys. Res. Lett. , 26, 1457-1460

Blyth E.M., Harding R.J. & Essery R.L.H., 1999. A coupled dual source GCM SVAT. Hydrology and Earth System Sciences, 3, 71-84

Cox P.M., Betts R.A., Bunton C.B., Essery R.L.H., Rowntree P.R. & Smith J. , 1999. The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dynamics, 15, 183-203

Essery R.L.H., 1999. Parametrization of heterogeneous snowmelt. Theoretical & Applied Climatology, 62, 25-30

Essery R. , Martin E., Douville H., Fernandez A. & Brun E., 1999. A comparison of four snow models with observations from an alpine site. Climate Dynamics, 15, 583-593

Essery R.L.H., Li L. & Pomeroy J.W., 1999. A distributed model of blowing snow fluxes over complex terrain, Hydrological Processes, 13, 2423-2438


Best M.J., 1998. A model to predict surface temperatures. Boundary-Layer Meteorol., 88, 279-306

Cox P.M., Huntingford C. & Harding R.J., 1998. A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J. Hydrology, 212-213, 79-94

Essery R.L.H., 1998. Boreal forests and snow in climate models. Hydrological Processes, 12, 1561-1567

Essery R.L.H., 1998. Snow modelling in the Hadley Centre GCM. Physics and Chemistry of the Earth, 23, 655-660

Pomeroy J.W., Gray D.M., Shook K., Toth, Essery R.L.H., Pietronia & Hedstrom, 1998. An evaluation of snow processes for land surface modelling. Hydrological Processes , 12, 2339-2367. Weiquing Qu et al (35 authors, including J. Lean), 1998. Sensitivity of latent heat flux from PILPS land-surface schemes to perturbations of surface air temperature. J. Atmos. Sci., 55, 1909-1927

Woodward F.I., Lomas M.R. & Betts R.A., 1998. Vegetation-climate feedbacks in a greenhouse world. Phil. Trans. Roy. Soc. Lond., B, 353, 29-39


Betts R.A., Cox P.M., Lee S.E. & Woodward F.I., 1997. Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature, 387, 796-799

Chen T.H., et al. (includes Lean J.), 1997. Cabauw experimental results from the project for intercomparison of land surface parameterization schemes (PILPS). J. Clim., 10, 1194-1215

Essery R.L.H., 1997. Seasonal snow cover and climate change in the Hadley Centre GCM. Ann. Glac., 25, 362-366

Essery R.L.H., 1997. Modelling fluxes of momentum, sensible heat and latent heat over heterogeneous snow cover. Q. J. R. Meteorol. Soc., 123, 1867-1883

Essery R.L.H., 1997. Parametrization of fluxes over heterogeneous snow cover from GCMs. Ann. Glac., 25, 38-41

Huntingford C. & Cox P.M., 1997. Use of statistical and neural network techniques to detect how stomatal conductance respond to changes in the local environment. Ecological Modelling, 97, 217-246

Jones C.D. & McPherson B., 1997. A latent heat nudging scheme for the assimilation of precipitation data into an operational mesoscale model. Met. Applications, 3/4, 269-277

Lean J. & Rowntree P.R., 1997. Understanding the sensitivity of a GCM simulation of Amazonian deforestation to the specification of vegetation and soil characteristics. J. Clim., 10, 1216-1235